Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0614720090520020113
Journal of Korean Medical Association
2009 Volume.52 No. 2 p.113 ~ p.120
Imaging of Cancer Metabolism using Positron Emission Tomography
Yoon Mi-Jin

Lee Jong-Doo
Abstract
In the 1920 s, Warburg reported an observation that cancer cells depend on glycolysis even in the presence of available oxygen likely due to impaired function of mitochondria. Since then, this Warburg s effect has been the most important hypothesis in cancer metabolism and is considered as a seventh hallmark of many human cancers. Aerobic glycolysis was originally attributable to increased bioenergetic needs in rapidly proliferating cancer cells. Recently, biosynthetic aspects of aerobic glycolysis, which reprograms cancer metabolism to synthesize macromolecules such as nucleotides, fatty acids, amino acids, etc., are under active investigation. Introduction of positron emission tomography (PET) and metabolic radiotracers including F-18 flurorodeoxyglucose (FDG) and C-11 acetate made it possible to image cancer metabolism in vivo and to renew the interests on this issue. Studies have found that cancer cells with highly glycolysis features are associated with resistance to many chemotherapeutic regimens and radiation treatment. Therefore, development of glycolytic inhibitors can have an incremental effect to conventional treatments. In addition, functional imaging with metabolic radiotracers will continuously play important roles in detecting cancers and monitoring therapeutic responses to novel anti-metabolic approaches to cancer cells.
KEYWORD
Cancer metabolism, PET, Glycolysis
FullTexts / Linksout information
  
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed